select call_block_time, call_tx_hash, output_0 as post_id,json_value(vars, 'lax $.profileId') as profile_id, -- Access element in json stringjson_value(vars, 'lax $.contentURI') as content_url,json_value(vars, 'lax $.collectModule') as collection_module,json_value(vars, 'lax $.referenceModule') as reference_module, varsfrom lens_polygon.LensHub_call_postwhere call_success = truelimit10
with post_data as (select call_block_time, call_tx_hash, output_0 as post_id,json_value(vars, 'lax $.profileId') as profile_id, -- Access element in json stringjson_value(vars, 'lax $.contentURI') as content_url,json_value(vars, 'lax $.collectModule') as collection_module,json_value(vars, 'lax $.referenceModule') as reference_module,from lens_polygon.LensHub_call_postwhere call_success = trueunion allselect call_block_time, call_tx_hash, output_0 as post_id,json_value(vars, 'lax $.profileId') as profile_id, -- Access element in json stringjson_value(vars, 'lax $.contentURI') as content_url,json_value(vars, 'lax $.collectModule') as collection_module,json_value(vars, 'lax $.referenceModule') as reference_module,from lens_polygon.LensHub_call_postWithSigwhere call_success = true),posts_summary as (selectcount(*) as total_post_count,count(distinct profile_id) as posted_profile_countfrom post_data),top_post_profiles as (select profile_id,count(*) as post_countfrom post_datagroup by1order by2 desclimit1000)select profile_id, post_count,sum(post_count) over () as top_profile_post_count, total_post_count, posted_profile_count,cast(sum(post_count) over () as double) / total_post_count *100 as top_profile_posts_ratiofrom top_post_profilesinner join posts_summary on trueorder by2 desc
with post_data as (-- Get post data from LensHub_call_post and LensHub_call_postWithSig tables),post_daily_summary as (select date_trunc('day', call_block_time) as block_date,count(*) post_count,count(distinct profile_id) as profile_countfrom post_datagroup by1)select block_date, post_count, profile_count,sum(post_count) over (order by block_date) as accumulate_post_countfrom post_daily_summaryorder by block_date
with post_data as (select call_block_time, call_tx_hash, output_0 as post_id,json_value(vars, 'lax $.profileId') as profile_id, -- Access element in json stringjson_value(vars, 'lax $.contentURI') as content_url,json_value(vars, 'lax $.collectModule') as collection_module,json_value(vars, 'lax $.referenceModule') as reference_modulefrom lens_polygon.LensHub_call_postwhere call_success = trueand call_block_time >=now() - interval '30'dayunion allselect call_block_time, call_tx_hash, output_0 as post_id,json_value(vars, 'lax $.profileId') as profile_id, -- Access element in json stringjson_value(vars, 'lax $.contentURI') as content_url,json_value(vars, 'lax $.collectModule') as collection_module,json_value(vars, 'lax $.referenceModule') as reference_modulefrom lens_polygon.LensHub_call_postWithSigwhere call_success = trueand call_block_time >=now() - interval '30'day)select profile_id,count(*) as post_countfrom post_datagroup by1order by2 desclimit100
Lens的评论数据与发帖数据类似,按数据产生来源不同,分别保存在LensHub_call_comment和LensHub_call_commentWithSig表中。基于Lens协议目前的功能,用户必须已经创建了自己的Profile才能对其他人创作者对Post进行评论。在评论数据表中,是通过评论者的Profile ID来进行追踪的。同时,每个创作者的发帖,其编号是从1开始累加的。也就是说,不同创作者的发帖,其编号可能相同。我们需要将创作者的Profile ID 和其Publication ID关联起来这样才能得到唯一的编号。SQL如下:
select call_block_time, call_tx_hash, output_0 as comment_id, -- 评论编号json_value(vars, 'lax $.profileId') as profile_id_from, -- 评论者的Profile IDjson_value(vars, 'lax $.contentURI') as content_url, -- 评论内容链接json_value(vars, 'lax $.pubIdPointed') as publication_id_pointed, -- 被评论的Publication IDjson_value(vars, 'lax $.profileIdPointed') as profile_id_pointed, -- 被评论的创作者的Profile IDjson_value(vars, 'lax $.profileIdPointed') ||'-'||json_value(vars, 'lax $.pubIdPointed') as unique_publication_id -- 组合生成唯一编号from lens_polygon.LensHub_call_commentwhere call_success = truelimit10
with comment_data as (-- get comment data from LensHub_call_comment and LensHub_call_commentWithSig tables)select profile_id_pointed, publication_id_pointed, unique_publication_id,count(*) as comment_countfrom comment_datagroup by1, 2, 3order by4 desclimit500
select call_block_time, t."from" as collector, c.profileId as profile_id, c.pubId as publication_id,cast(c.profileId as varchar) ||'-'||cast(c.pubId as varchar) as unique_publication_id, c.output_0 as collection_idfrom lens_polygon.LensHub_call_collect cinner joinpolygon.transactions t on c.call_tx_hash = t.hash -- 关联交易表获取用户地址where call_block_time >=date('2022-05-18') -- Lens合约的发布日期,提升查询效率and block_time >=date('2022-05-18')and c.call_success = truelimit10
selectjson_query(vars, 'lax $.follower') AS follower, -- single valuejson_query(vars, 'lax $.profileIds') AS profileIds, -- still stringfrom_hex(cast(json_extract(vars,'$.follower') as varchar)) as follower2, -- cast to varbinarycast(json_extract(vars,'$.profileIds') as array(integer)) as profileIds2, -- cast to arrayvarsfrom lens_polygon.LensHub_call_followWithSigwhere cardinality(output_0) >1limit10
读取关注详情的完整SQL代码如下:
with follow_data as (select f.follower, p.profile_idfrom (select from_hex(cast(json_extract(vars,'$.follower') as varchar)) as follower, -- cast to varbinarycast(json_extract(vars,'$.profileIds') as array(integer)) as profile_ids -- cast to arrayfrom lens_polygon.LensHub_call_followWithSigunion allselect t."from" as follower,cast(f.profileIds as array(integer)) as profile_idsfrom lens_polygon.LensHub_call_follow finner joinpolygon.transactions t on f.call_tx_hash = t.hashwhere call_block_time >=date('2022-05-18') -- Lens launch dateand block_time >=date('2022-05-18')and call_success = true ) fcross join unnest(f.profile_ids) as p(profile_id))select*from follow_datalimit100
这里需要说明一下,我们使用了cross join unnest(f.profile_ids) as p(profile_id)子句,将子查询中的数组进行拆解,并获取拆开的单个ID值。同时,因为lens_polygon.LensHub_call_follow表中的元素类型为uint256,这是一个Dune 的自定义类型,我们无法在从json字符串提取值时使用这个类型,所以我们用cast(f.profileIds as array(integer))将uint256转换为integer类型。
with follow_data as (-- Get follow data from table LensHub_call_follow and LensHub_call_followWithSig),profile_follower as (select profile_id,count(follower) as follower_countfrom follow_datagroup by1)select (casewhen follower_count >=10000then'10K+ Followers'when follower_count >=1000then'1K+ Followers'when follower_count >=100then'100+ Followers'when follower_count >=50then'50+ Followers'when follower_count >=10then'10+ Followers'when follower_count >=5then'5+ Followers'else'1 - 5 Followers'end) as follower_count_type,count(profile_id) as profile_countfrom profile_followergroup by1
with action_data as (with post_data as (-- get post data from relevant tables ), comment_data as (-- get comment data from relevant tables ), mirror_data as (-- get mirror data from relevant tables )select'Post' as action_type, *from post_dataunion allselect'Mirror' as action_type, *from mirror_dataunion allselect'Comment' as action_type, *from comment_data)select action_type,count(*) as transaction_count,count(distinct profile_id) as profile_countfrom action_datagroup by1
我们可以用相似的方法,新建一个按日期汇总每日各种操作数量的查询。示例代码如下:
with action_data as (
-- same as above query
)
select date_trunc('day', call_block_time) as block_date,
action_type,
count(*) as transaction_count
from action_data
group by 1, 2
order by 1, 2
with action_data as (with follow_data as (-- get follow data from relevant tables ), collect_data as (-- get collect data from relevant tables )select'Follow' as action_type, *from follow_dataunion allselect'Collect' as action_type, *from collect_data)