最后,我们将时间序列和每一个小时的累积余额进行关联,补足缺失交易数据的时间段的值。请注意这里的关联条件:inner join date_series d on p.block_date <= d.block_date and d.block_date < p.next_date。这里使用了两个条件,限定累计余额的日期时间必须小于等于日期序列的日期时间值,同时序列的日期时间值必须小于下一个有记录的余额的日期时间值。这是一个很常见的处理技巧。因为并不是所有的Token在每一个时间段都有交易,如果遇到没有发生交易的时间段,我们需要用前一个时间段的余额来代表其在当前时间段的余额。这个应该不难理解,因为“当前时间段”内没有发生新的变化,所以余额自然跟上一个时间段相同。
查询代码如下:
with date_series as (select block_datefrom unnest(sequence(timestamp'2023-04-01 00:00:00', localtimestamp, interval '1'hour)) as tbl(block_date)),pool_balance_change as (select symbol, date_trunc('hour', block_date) as block_date,sum(amount_usd) as amountfrom query_2339248group by1, 2),pool_balance_summary as (select symbol, block_date,sum(amount) over (partitionby symbol order by block_date) as balance_amount,lead(block_date, 1, current_date) over (partitionby symbol order by block_date) as next_datefrom pool_balance_changeorder by1, 2)select d.block_date, p.symbol, p.balance_amountfrom pool_balance_summary pinner join date_series d on p.block_date <= d.block_date and d.block_date < p.next_dateorder by1, 2
SELECT SUM(50/POWER(2, ROUND(height/210000))) as Supply, SUM(50/POWER(2, ROUND(height/210000)) * p.price) /POWER(10, 9) AS"Market Cap"FROM bitcoin.blocksINNER JOIN ( SELECT price FROM prices.usd_latest WHERE symbol='BTC' AND contract_address IS NULL) p ON TRUE
今天学习的下一个指标是日/月活跃用户 (Daily/Monthly Active User,DAU/MAU)。相对于绝对交易数额,活跃用户的数目更能反应一个协议受欢迎程度。由于少数用户的大额交互就可以拉高交易数额,活跃的用户数可以更客观的描述该协议的热度。它的计算方式比较简单,我们只要找出与某个合约交易的钱包地址,并按天/月统计频数即可得出。 我们以最近比较热门的Lens为例:
with daily_count as (select date_trunc('day', block_time) as block_date,count(*) as transaction_count,count(distinct"from") as user_countfrompolygon.transactionswhere"to"= 0xdb46d1dc155634fbc732f92e853b10b288ad5a1d -- LensHuband block_time >=date('2022-05-16') -- contract creation dategroup by1order by1)select block_date, transaction_count, user_count,sum(transaction_count) over (order by block_date) as accumulate_transaction_count,sum(user_count) over (order by block_date) as accumulate_user_countfrom daily_countorder by block_date
with optimism_new_users as ( SELECT "from"asaddress,min(block_time) as start_time FROM optimism.transactions GROUP BY 1)SELECT date_trunc('day', start_time) as block_date,count(n.address) as new_users_countFROM optimism_new_users nWHERE start_time >=date('2022-10-01')GROUP BY 1